Calculus

Derivative

Rules

Constant Rule: The derivative of a cOnstant is O

Power Rule: $\frac{d}{dx}x^n = nx^{n-1}$

Constant * Function Rule: $\frac{d}{dx} [cf(x)] = cf'(x)$

Sum & Difference Rule:

$$\frac{d}{dx} [f(x) \pm g(x)] = f'(x) \pm g'(x)$$

Product Rule: $\frac{d}{dx}[f(x)g(x) = f(x)]$ This times the derive	f(x)g'(x) + g(x)f'(x) vative of that plus that times the derivative of this	S	
Quotient Rule: $\frac{d}{dx} \left[\frac{f(x)}{g(x)} \right] = \frac{g(x)}{Ho-d-Hi - Hi-d-Ho \text{ over He}}$			
Chain Rule: $\frac{d}{dx}[f(g(x))] = f'(g(x))$ Do-I-Di	g(x))g'(x)		
		I	Position: $s(t) = \frac{1}{2}gt^2 + v_0t + s_0$
		X	Velocity: $v(t) = s'(t)$
		I	Acceleration: $a(t) = v'(t) = s''(t)$
Trig Derivatives: $\frac{d}{dx}[\sin x] = \cos x$	$\frac{d}{dx}[\cos x] = -\sin x$		
$\frac{d}{dx}[\tan x] = \sec^2 x$	$\frac{d}{dx}[\cot x] = -\csc^2 x$		
$\frac{d}{dx}[\sec x] = \sec x \tan x$	$\frac{d}{dx}[\csc x] = -\csc x \cot x$		